
The Development and Software Design of a Cost Effective, Mobile CAVE

Competency:
Division:

August 11, 2004

Manager:

Ashley Kramer

Team Members:

John Wilkinson

Cris Kania

Kavi Jivan

Mentors:

Janice Cawthorn NASA Langley Research Center
DEVELOP Langley Faculty Advisor 4 Langley Blvd.
Phone: (757) 864-3834 Building 1230, Room 137
Email: j.d.cawthorn@larc.nasa.gov Hampton, VA 23681-2199

Michael Ruiz NASA Langley Research Center
National DEVELOP Program Manager 4 Langley Blvd.
Phone: (757) 864-3738 Building 1230, Room 133 C
Fax: (757) 864-7890 Hampton, VA 23681-2199
Email: m.l.ruiz@larc.nasa.gov

Abstract

NASA’s DEVELOP program has spent the past three years implementing a portable
Cave Automatic Virtual Environment (CAVE). A CAVE is a multi-person 3D immersive
environment consisting of three or more walls and based on an active stereo imaging system. A
traditional CAVE is primarily used as a research tool, running calculation intense simulations,
costing upwards of one million dollars, and lacking the ability to be easily transported. The
primary motive for undertaking the development of a portable CAVE was to provide a mobile
gizmo for DEVELOP’s other Earth Science teams to more effectively present and explain their
data visualizations. Our portable CAVE can collapse in under an hour, load easily into a fifteen
passenger van, transported anywhere, and can be setup and aligned in under two hours. In the
project’s first two years, the team designed and implemented the parallel computing system and
the CAVE’s associated hardware. The portable CAVE was designed using all commercially
available Linux-based PC’s, standard LCD projectors, and a novel shutter wheel system for the
active stereo imaging. This brought the cost down to around $35,000, a mere fraction of the cost
of a traditional CAVE. This summer’s work has focused on the development of the software to
drive the CAVE and import an array of Earth Science data sets. The main file types that this
CAVE needed to support were DEMS, overlays, and Geospatial Feature Sets. After much
research, we decided to use the Virtual Terrain Project (VTP), Simple DirectMedia Library
(SDL), and Open Scene Graph (OSG) as the framework for our Portable CAVE application,
which we named Immersive GIS. This application was designed with the ability to import the
aforementioned data types, render them in stereo, and display them across the three screens of
the CAVE. Immersive GIS also allows for the exaggeration of terrains, various texture overlays,
simple navigation through a game pad, and pre-programmable flight paths through various
terrains.

Introduction

 CAVE stands for Cave Automatic Virtual Environment. It is a recursive acronym as well
as a reference to Plato’s "The Allegory of the Cave” from his famed work, The Republic, in
which he uses the analogy of shadows dancing on his cave walls to define human perception and
reality.1 Scientists from the University of Illinois used this analogy in the creation of the first
present-day CAVE. A traditional CAVE is a multi-person, immersive virtual reality
environment. It consists of three walls and a floor traditionally, in which three-dimensional
images are displayed stereoscopically. This environment is successful in allowing users to
interact with data in ways never possible before. Traditional CAVEs use expensive, high-level
technology and have an immobile structure. In past years, DEEVLOP created the hardware
components for a low-cost, portable CAVE. The task this summer was to create the software
application to render Earth Science visualizations to display them in stereo 3D in the CAVE, as
well as improve upon the safety, reliability and portability of the hardware.

Background

In the summer of 2002, the DEVELOP program at NASA began work on an inexpensive,
mobile, and user-friendly CAVE in order to gain a more effective method to display their Earth
Science data visualizations at conferences and meetings. A traditional CAVE is comprised of

expensive DLP active-stereo projectors, super computers, and can cost upwards of a million
dollars. DEVELOP's CAVE has been implemented using commodity LCD projectors and a
cluster of readily available Linux based gaming PC's. A traditional CAVE uses expensive DLP
projectors, because a standard LCD projector cannot flip between the two stereo images fast
enough. A method was developed to gain this stereo imaging without the use of expensive
projectors by designing a shutter wheel system in which two projectors display the right and left
eye image simultaneously. A shutter wheel system then controls which image is displayed at any
given instant.
 DEVELOP's CAVE project is in its third year. In the first year, the team showed the
feasibility of using a cluster of computers to display stereo images on three screens. In the
second year, the team designed and constructed the hardware, which included the collapsible
screen frame, the mirror stands, the projector racks, and the shuttering system. In the third year,
the software was designed to actively import and render data to be displayed in the CAVE. In
that year, much of the hardware was improved on as well as a new, more efficient alignment
system developed.

Hardware

 Most of the hardware components were completed by past DEVELOP teams. Many
unique methods were used to make the environment less costly and portable.
This mobile CAVE can be setup and aligned in less than two hours and disassembled in even
less time. It fits comfortably into a fifteen-person van and taken to meetings and conferences all
over the country (Figure 1).

Figure 1 CAVE packed in van

Active-Stereo Projection

Humans’ perception of depth is the result of a complex neurological process that draws
on everything from basic trigonometry to human experience. A CAVE exploits several of the
brain’s cues for depth perception to create the illusion of depth and three-dimensionality. The
principal cue that a CAVE exploits is the disparity between the two eyes, which arises from their
horizontal separation. Due to this disparity, the brain receives an image in stereo as two slightly
different images as evidenced by basic trigonometry. In a CAVE, an image is displayed on each
wall in stereo at a frequency greater than 80 Hz. This stereo projection used in conjunction with
synchronized, liquid crystal shuttering glasses, tricks the user's brain into seeing depth, thus
creating the desired immersive 3D environment. A CAVE system also exploits other cues, such
as shading, texturing, and overlaying. These other cues are all created in software.

Cluster

 In the summer of 2002, the students focused on building three display machines, each
responsible for one wall of the CAVE, and a server. The open source Red Hat Linux operating
system was loaded on each machine and they were connected through a high-speed network
switch. Table 1 shows a summary of the computer’s main hardware components.

 Server Display Node
Graphics NVidia GeoForce4 TI 4200 NVidia GeoForce4 TI 4600
Processor Dual Athlon 1900+ Athlon 2000+

RAM 1.5 GB 1 GB
Hard Drive 160 GB RAID 0 120 GB RAID 0
Network 1000 Mb/s 100 Mb/s

Table 1 Cluster Specification 2

Environment

 The physical environment of the CAVE consists of the frame, screens, mirrors, and
projectors. Square aluminum tubing was assembled to construct the frame of the CAVE. Each
segment of the frame slides onto connectors in the corners (Figure 2). This arrangement allows
the frame to easily be assembled and disassembled. The screen, which was sewn by a sail
maker, then slides easily over the frame. Specially designed boxes house each pair of projectors
to aid in alignment. These boxes were built in a cabinet shop and allow for pitch, roll, and yawl
adjustments. The mirrors were held upright by simple mounts that allow for pitch adjustment.
This entire system is easily transported, assembled, and aligned.

Improvements

 The most obvious shortcoming of the hardware was the safety concerns and the lack of
portability of the mirrors. Previously, the mirrors were held by a simple stand that did not
provide much support or any protection. To amend this problem, we designed and built frames
and new stands for the mirrors (Figure 3). Each frame was built with cabinet quality plywood to
minimize warping and increase strength. The mirror then slid into a 2x4 frame, which had a
half-inch groove cut into it. Padding was placed behind the mirrors for an added layer of
protection. Padded covers were also made for the mirrors. These covers had wheels on the
bottom to allow for easier transportation. To hold these frames, new stands were built that have
the ability to collapse and be easily transported.
 The next hardware improvement that was made was the simplification of the turn on/off

Figure 2 Corner

process. Previously, a screwdriver was used to speed up and slow down the chopper wheels.
Problems were encountered when starting and stopping at full speed. The incorporation of a
capacitor into the oscillator circuit solved this problem. A 500 µF capacitor provided enough
charge and discharge time to allow the motors to slowly accelerate and then decelerate with a
simple switch.
 The next hardware improvement was to rewire some of the circuitry that drives the
hardware. This consisted of simple re-soldering and organization of the wires and connections.
The components involved included the oscillator, stepper drivers, amplifiers, optical sensor, and
emitters.

Software

Throughout the first years in development, the efforts regarding the software aspect of the
CAVE had for the most part lagged behind that of the development on the actual hardware, but
with the hardware setup virtually complete this past summer, the focus of the team has been
aimed primarily at adding the software component. There were of course many options to
choose from on deciding the best path to completing the project each having its own advantages
and disadvantages. Indeed much time was spent on researching these options before deciding
what software needed to be programmed. At the end of this research a handful of important
libraries were chosen and software was written to specifically handle the purpose of the cave.
That is, the software that was to be created needed to be capable of the following: to render in
real time to allow user interaction with the environment, to display vast terrains at varying levels
of detail, to overlay geo-referenced raster and vector data sets over the terrain, and to provide a
means of flying through the terrain using previously created flight paths.

Research

 When this summer’s team approached the task of designing active, running software for
the Portable CAVE, we researched many possibilities. Past DEVELOP teams that could not
fully complete tackled the task of designing the software used programs such as VRJuggler,3
CAVELib,4 and Vgeo5 as their framework. We also explored Diverse6 and writing the program
from scratch. When choosing the direction to take, time and money needed to be greatly
considered. Therefore we eliminated CAVELib from our list because it costs nearly $3,000.
Also Diverse was a library that only worked with the graphics API, Open GL Performer, which
would have to be purchased. VRJuggler was a very complex program, which would be quite
time-consuming to learn. The main file types we need to support to show Earth Science visuals
in the CAVE are DEMS, overlays, and Geospatial Feature Sets. Vgeo, a library looked very

Figure 3
New Mirror Frame

heavily at by past teams, was found to not support the data types that we needed. CAVELib and
Vgeo also had licensing issues and could have possibly been a problem when it came time to
take our CAVE off-center to show at other locations. Our choice then became using the Virtual
Terrain Project (VTP),7 Simple DirectMedia Library (SDL),8 and Open Scene Graph (OSG)9 as
the framework for our Portable CAVE application.

The Virtual Terrain Project is a library based on the goal of creating tools for allowing a
programmer to easily construct and display any part of the real world in a 3D digital format.
Virtual Terrain Project allows a user to input elevation and texture overlay data rather easily.
The SDL library allows a programmer to interrupt user input and utilize the input in other
programs. For example, the game pad utilized by Immersive GIS is imported through the SDL
library. Open Scene Graph is a library that can be utilized in the construction of a scene. It can
render digital 3D objects. It aids in generating models and elevation visuals.

Immersive GIS

After reaching a decision to use the VTP, SDL, and OSG libraries as the basis for a C++
program for accomplishing the goals for the DEVELOP CAVE, some of the first problems were
tackled. The most difficult obstacle to be encountered in programming the application was the
complete lack of knowledge in using any of the base libraries, and learning them was made fairly
difficult due to the poor documentation of some of them, especially VTP, for which we typically
relied on using the source code for understanding its usage. Before introducing any complexities
of writing the application to run in the CAVE, the application was created to run in a typical
single-machine desktop environment; this made learning how to use the VTP library much
simpler. The SDL library was used to construct the display window, manage user input, and to
create the OpenGL graphics context in which OSG would render to in this simplified
environment. Next, code was written to handle navigating with game pad devices, the rendering
of terrain, and flying previously made flight paths.

These tasks were pretty much divided amongst individual team members. Using a program
called Concurrent Versions System (CVS), each member would work on their specific part and
update a centralized code repository with their changes. Managing the code development with
this program worked out very well. For programming navigation of the scene with a game pad
device was fairly straightforward; in fact the functionality provided by SDL for joystick devices
was one of the reasons we opted to use it. The rendering of the terrain was extremely simplified
through the use of the VTP library. The program was coded to load a terrain Extensible Markup
Language (XML) script specified by a command line parameter. The main difficulty
encountered here was preparing the data provided by the environmental science DEVELOP
teams to something that could be loaded with the VTP library. Eventually the tools provided
with the Geospatial Data Abstraction Library (GDAL)10 library were discovered and used to
transform the DEM and overlay data to something usable. Programming the navigator to fly an
arbitrary flight path was one of the more challenging things to code. However, by adding some
code, some functions of the OSG library were used to program the autonomous flight system.

Once the application was found to be working well, it was then extended to run in the CAVE
environment. The application then needed the capability of synchronously running on three
machines and displaying stereo graphics. Providing the stereo graphics was certainly the easier
of the two tasks, as OSG had built-in stereo support. In fact, by simply setting specific
environment variables recognizable to OSG, stereo graphics could be produced. Of course, there

were problems with enabling stereo graphics through the environment variables that made it
seem as if OSG was not working correctly, and it was not until the source code was delved into
for a day or two that the source of the problem was discovered and fixed. The only other
problems encountered in permitting stereo graphics were in coding VTP to use OSG’s built-in
stereo capabilities. Though learning the code took a while the solution only involved to small
fixes to the library. The last problem involved creating an oblique projection matrix for the
application for when it ran on a wall of the CAVE. The measurements for the frustum were
calculated and put into a configuration script along with other window creating variables
including resolution, and model view rotation – used to rotate the navigator to the right and left
for creating the appropriate view for the side walls.

The solution to utilizing the distributed rendering system of the cave may not have been
solved as nicely as it could have been, however a solution was found. While it may have been
the goal of Open Producer, one of the libraries OSG is based on, to be able to visualize an OSG
scene on any display setup including a CAVE, the library was not quite to that point in
development. In the future, using this capability could simplify any coding and greatly increase
the versatility of any software developed. The approach taken in the development of Immersive
GIS was to use SDL_net, a small multi-platform library for providing network communication.
A client/server model was used for the application. One machine would run the application and
act as the server, while the other three machines would be run as clients. Simply put, the server
application was programmed to continually broadcast the viewer’s model viewing matrix to the
client machines. In order to provide some degree of versatility for the application, the code was
made to set up the client/server arrangement via a configuration file specified as a command-line
argument.

Overall, the written from scratch program provided a great degree of performance and was
well suited to its purpose, though undoubtedly future improvements could be made. Besides
having used only open source libraries in creating Immersive GIS, they all were multi-platform.
It would likely not be very difficult to compile and use the application on a different platform.

Running the CAVE

There are only four basic components in setting up the CAVE: the frame, the mirrors, the
canvas, and the computers. The first step is assembling the frame, which is fairly intuitive, and
positioning it in a room in such a way that the mirrors can then be placed a distance behind each
wall. Diagram 1 best represents this configuration. Starting with the back wall, the canvas is
then hung up around the frame and zipped. The vertical cables can afterwards be tightened to
remove any wrinkles in the canvas. Alignment of the mirrors and projector boxes is the most
difficult procedure in setting up the cave. Using a specially designed alignment string, the
distances and angles between the wall, the mirror, and the projector box, can be set. Afterwards,
to set up each wall requires time intensive tweaking of the aforementioned components
positioning.

The computer system is relatively easy to set up. After placing the three display nodes
alongside their corresponding projector boxes and plugging in all the cables, the Ethernet
network cables are wired to a port on the switch. The server is set up out of the way of the
CAVE and is connected to the gigabit port of the switch. Once all the machines are running, the
application can be run. Though it is a bit awkward, the current way of running the Immersive
GIS application is to initialize it on each individual machine through secure shell. Each program

is run with the same command line option to use the cave configuration file. Which sets up the
window and server/client role of the program on each specific machine. When executing the
program on the display nodes, it will also be necessary to set a chain of OSG stereographic
environment variables. Further documentation on how to use the program was created in the
application directory.

LaRC Equipment/Facilities Used

 The CAVE team received help from Dr. Sandridge, the head of one of Langley’s two
traditional CAVEs. He allowed us to view a space station application in his CAVE and offered
us software suggestions in the beginning of our term. Mr. Gary Qualls, the NASA official
responsible for the Arial Regional-scale Environmental Study of Mars, allowed us to view some
of his three-dimensional animations of the mars airplane and helped us try to format it to view in
the CAVE.

Further Research

 Virtual reality, in its most general term is: “an artificial environment created with
computer hardware and software and presented to the user in such a way that it appears and feels
like a real environment.”11 Much research has been done on the uses and effects of virtual reality
both physically and mentally. As with any research, both good and bad aspects have been
discovered.

Benefits

 Virtual reality can provide as an excellent training device for many industries. It can be
used in its physical aspect for testing and research that when done without virtual reality would

take much longer, more manpower, as well as possibly being a threat to the persons involved.
The aviation industry has been turning to virtual reality for air traffic control purposes. The
medical field is another prominent industry investigating using virtual reality simulators to create
“virtual patients” for training and planning purposes. It will greatly reduce the cost and patient-
risk during training.12 Virtual Reality can also be of use to surgeons by allowing them to
perform surgeries in remote locations. There is also a great deal of research being done on the
mental benefits to virtual reality. In a recent study, a team of Seattle doctors and engineers are
promoting virtual headgear as a method of reducing pain. In an ongoing study, it has been
discovered that virtual reality helps ease pain even more than medication in some cases. This is
due to the fact that the brain seems to put a lot of focus on pain. If the focus can be taken away
by means of a different, complimentary environment, the patient seems to feel less pain.13 An
example given is a burn patient who needs to be scrubbed regularly for medical purposes, be
engulfed in a snowy environment taking focus off of the burning sensation and making the
patient feel a little chilly even.

Concerns

 As with any new innovation, there are concerns that need to be considered when it comes
to virtual reality especially when speaking in terms of a CAVE. A great deal of research still
needs to be done on the effects of a person staying in a CAVE environment for great periods of
time. Some people experience dizziness or nausea the minute they put the LCD glasses on and
step into the CAVE, some after a long period of time, and some people feel no symptoms at all
in the CAVE. Until further research is done, we chose to limit people’s time in out portable
CAVE to five minutes at a time. Another concern is seizures. Due to the flickering of the lights
in the CAVE for the stereoscopically viewing, it could be a hazard to those who have a history of
seizures especially photosensitive seizures.14 To prevent any accidents or harm to a CAVE
viewer we actively post signs warning the viewer of the flickering they will experience in the
CAVE before they enter.

Conclusion/Results

 The overall results of the project were very good. The software was successfully
designed to display Earth Science visualizations in the CAVE. Also, hardware improvements
made the CAVE more reliable, safer, and more “travel-friendly.” As with any software program,
enhancements can and will be made. Also, more can be done in the future to make the CAVE
even more portable. Upon finding a new location with a higher ceiling for the Portable CAVE, a
floor can be added to make it an exact replication of a traditional CAVE.

References

[1] Kenyon, Robert V. “THE CAVETM AUTOMATIC VIRTUAL ENVIRONMENT:
CHARACTERISTICS AND APPLICATIONS.” Human-Computer Interaction and Virtual
Environments, ed. Ahmed Noor Ph.D., NASA Conference Publication #3320, Pages 149-168, November,
1995.

[2] Miller, Samuel…

[3] VR Juggler. Ver. 2.0 for Linux. Open Source Library. Ames, Iowa: Iowa State University’s Virtual

Reality Applications Center, 2004.
Available: http://vrjuggler.org

[4] CAVELib. Ver. 3.0 for Linux. Licensed Library. Virginia Beach, Virginia: VRCO, 2003.
Available: http://www.vrco.com/products/cavelib/cavelib.html

[5] Virtual Global Explorer and Observatory. Ver. 2.0 for Linux. Licensed Library. Virginia Beach

Virginia: VRCO, 2003.
Available: http://www.vrco.com/products/vgeo/vgeo.html

[6] Device Independent Virtual Environments- Reconfigurable, Scalable, Extensible. Ver. 2.3.2 for Linux.

Open Source Library. Blacksburg, Virginia. University Visualization and Animation Group, 2003.
Available: http://diverse.sourceforge.net/

[7] Virtual Terrain Project. Ver. 2.0 for Linux. Open Source Library.

Available: http://www.vterrain.org/

[8] Simple DirectMedia Layer. Ver 1.2 for Linux. Cross-platform multimedia library. Sam Lantinga, Loki

Entertainment Software.
Available: http://www.libsdl.org/index.php

[9] Open Scene Graph. Linux. Graphics API. Sourceforge.net, 2004.
Available: http://openscenegraph.sourceforge.net/index.html

[10] Geospatial Data Abstraction Library. Ver. 1.2.1 for Linux. Translator library for raster geospatial data

formats. Doxygen, 2004.
Available: http://www.remotesensing.org/gdal/

[11] "Virtual Reality." Webopedia. Datamation. Retrieved 3 Aug 2004.

<http://itmanagement.webopedia.com/TERM/v/virtual_reality.html>

[12] “Med students practice on 'virtual' patients.” eSchool News staff and wire service reports.

4, Aug 2004.
 <http://www.eschoolnews.com/news/showStoryts.cfm?ArticleID=5212>

[13] Paulson, Tom. “VR devices trick the brain into ignoring pain.” Seattle Post-Intelligencer. 1 Jul.

2004.
 <http://seattlepi.nwsource.com/health/180283_hcenter01.html>

[14] “Photosensitivity and Seizures.” Epilepsy Foundation Website. 2002.
 <http://www.epilepsyfoundation.org/answerplace/Medical/seizures/precipitants/photosensitivity/photose

nsitivity.cfm>

